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Abstract. A special system for mareogram processing is proposed. Such a system is based on
two different approaches, namely, neural network technique, and inverse problems. By using two
alternative methods, it is possible to achieve better accuracy in determining space parameters of
a tsunami source. The above mentioned approaches are described in the paper. Model numerical
tests, processed over the realistic depth profile, are then demonstrated.

1. Introduction

In this paper the inverse tsunami problem is considered, i.e., evaluation of
parameters of a tsunami source based on data of observations of waves in
the open ocean or on the shore. It is known that the solution of this inverse
problem requires that during the analysis of mareograms the trend of the
trace of wave propagation and the trend of the source of perturbation be
extracted from tsunami records.

For construction of the trace function and the source function based on
tsunami registration data, various methods can be used, such as analytic
solution of the direct and inverse problems, numerical methods of modeling
of excitation, and propagation of tsunami waves.

In this work a number of new approaches are proposed. They are based
on complex optimization of the observation system, determination of the
space distribution of tsunami source through the corresponding inverse prob-
lem, and nonlinear multiparameter regression analysis (neural-network tech-
nology) of tsunami wave records during which the trace function and the
sought source function are reconstructed.

The informational-computational technology being created here is uni-
versal for the purposes of analysis of tsunami registration data. In particular,
the optimization methods here applied allow one to solve the following par-
ticular tasks in the tsunami related problems:

� to compress measured data for effective transmission and storage of
1Institute of Computational Mathematics and Mathematical Geophysics, SB RAS,

630090, Novosibirsk, Russia (avdeev@omzg.sscc.ru, mag@omzg.sscc.ru,
elder@nmsf.sscc.ru)

2Sobolev Institute of Mathematics, Novosibirsk, Russia (mmlavr@nsu.ru)
3Institute of Mathematical Modeling, Krasnoyarsk, Russia (lena@cc.krascience.rssi.ru)
4Institute of Biophysics, Krasnoyarsk, Russia (noogen@krasu.ru)



796 A.V. Avdeev et al.

useful information without losses in the dynamic range during data
recovery;

� to extract the informative signal from the noise and to estimate the
characteristics of different phases of tsunami waves in on-line mode
during their continuous registration;

� to estimate the threshold values of the amplitude and period of the
tsunami wave in the problem of real-time prediction of tsunami danger;

� to find the optimal position of wave registration sensors in systems of
early tsunami detection;

� to construct regression relationships between various parameters of
the wave and characteristics of the site of underwater earthquake and
source of tsunami.

2. Nonlinear Multiparameter Regression of Data

2.1 Neural-network approach of data analysis

Application of traditional mathematical methods in the investigation of tsu-
namis does not always give satisfactory results because the form of the sought
relationships is a priori uncertain and nonlinear methods of analysis of ob-
servation data are relatively weakly developed.

Neural-network algorithms allow one to carry on the search for relation-
ships in large arrays of data with arbitrary statistical distribution of variates.
If relationships are revealed, then the neural-network model that was used
for analysis can be applied for prediction and control of the process under
study (Gorban, 2000).

In respect to information processing and analysis, neural networks differ
from traditional approaches in the following points:

� availability of a flexible parallel-serial method of data processing in
which the proportion of parallel and serial stages depends on a concrete
problem;

� calibration of the neural model during solution of the problem instead
of its programming;

� the stage of projection of a detailed calculation scheme is absent be-
cause that scheme consists of uniform relatively simple elements; more-
over, the structure of connections between them is established during
the calibration, which in the case of purely programmed realization cor-
responds to the application of one and the same simple computational
module in programs oriented to the solution of different problems;

� the function performed by the neural network is specified by a special
array of parameters that are formed during the calibration of the neural
network;
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� the block or program of learning and the system of modification of
connections are an integral part of the neural-network program;

� high resistance to failures of elements or damage of the parameter array
on a storage medium.

2.2 Description of the computational algorithm

Let us consider the computational technology of the construction of models
of data with the aid of neural networks. The universality of such an approach
is established by the known theorem: a collection of one nonlinear and many
linear transformations is sufficient to approximate any single-valued function
with an arbitrary given accuracy.

As was already mentioned, the neural-network approach—search for par-
tial derivatives with the aid of the Lagrange multiplier method—allows one
to construct such approximations rather effectively.

The setting of the problem of multiparameter nonlinear regression that
is used in the present neural-network algorithm assumes that the relation-
ship between known input variables and output variables being predicted is
sought.

The quality of approximation is evaluated by the estimation function of
the form

H =
∑

t

ht(x,At), (1)

where ht is the value of the estimate for the problem t, x is a set of parameters
of regression, and At are input variables for the problem t.

The estimate for the problem t is most often defined by the square of
the distance between measured output variables α̃t and predicted output
variables αt(x,At)

ht = (αt(x,At) − α̃t)ε(αt(x,At) − α̃t). (2)

In the above formula, the matrix ε assigns the coefficients of a nonnega-
tive defined quadratic form; if this matrix is diagonal, then these coefficients
are inversely proportional to tolerable root-mean-square deviations of pre-
dicted output variables from the measured ones.

The coefficients of ε may be called accuracy coefficients. If the inputs
are not known exactly, then a natural generalization is to pass over to the
estimation function

H ′ = H +
∑

t

(At − Ãt)µ(At − Ãt), (3)

where Ãt are the measured input parameters which do not coincide with
the best supposed parameters At obtained in the course of optimization of
the estimation function H ′ with respect to these parameters, and µ are the
coefficients of accuracy of input variables. The limit case when zero accuracy
corresponds to some or all inputs deserves special consideration.
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For convergence of the calibrating procedure that realizes minimization
of the estimate, it is desirable that the set of parameters being changed
during learning be necessarily compact. For this problem, one can choose
variants of requirements of a priori compactness that admit of meaningful
interpretation in terms of smoothness of the dependence of αt on At. Namely,
two variants of conditions may be used:〈

(∇at)
2
〉
≤ const;〈

(∇at)
2
〉
/
〈
at

2
〉 ≤ const,

(4)

that are imposed either on the average (over the space of inputs) values of
squares of derivatives of the input variables with respect to the output ones
(the first variant) or on the ratios of these average values to the average
squares of the input variables (the second relation).

In this work, we used the neural-network approximation of the input-to-
output dependence of the following form:

ai
t = bi + ci

∑
q

sin


ϕiq +

∑
j

kqj ×Aj
t


 . (5)

If the above approximation is chosen, then the first variant of the com-
pactness condition corresponds to the requirement(∑

i

(ci)2
)

×
∑
q,j

(kqj)2 ≤ const, (6)

while the second variant corresponds to the requirement∑
q,j

(kqj)2 ≤ const. (7)

In choosing a proper variant of neural-network approximation one of-
ten proceeds from the requirement of asymptotic universality of the neural
network, i.e., the possibility to approximate arbitrary sufficiently smooth
functions of input variables with arbitrary accuracy by increasing the num-
ber of network adjustment parameters.

One can show that when the number of adjustment parameters increases
the above representation of the network transforms into a variant of the
Fourier integral representation, whose approximational capabilities are well
studied.

With the modified estimation functional, either a variant on the basis
of the conjugate gradient method, when optimization is being done on the
direct product of the space of parameters of the model and the space of
input variables over all problems, or a variant in which modification of the
neural-network model and modification of the input variables are carried on
in turn were realized.

The reason for the application of the second variant is the possibility of
carrying on adaptation on each problem in turn, which saves computational
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resources. According to the results of tests, in a number of cases one succeeds
in satisfactorily reconstructing the missing information about inputs. At the
same time, if the accuracy of input data is low, the operation of the algorithm
is unstable, and additional regularization on the set of input variables is
necessary.

2.3 Description of the software complex “MODELS”

The software complex “MODELS” that has been developed is intended for
on-line synthesis of diverse information on tsunami by empirical and table
data and also by results of calculations on the basis of analytic and numerical
models with an adjustable level of smoothing of data.

It is assumed that synthesized analytical models reproduce approximately
the cause-and-effect connections that are typical of the original object, to the
extent in which these connections manifested themselves in the collection of
empirical data or in numerical computations.

Having a number of neural-network models of the phenomenon at one’s
disposal, one can, instead of experiments with the original object, resort
to numerical experiments for solution of applied problems in the problem
of a tsunami with a corresponding constructed nonlinear multiparameter
regression model.

Thus, from the mathematical viewpoint, the software complex performs
nonlinear multidimensional regression with adjustable smoothness. As in-
terpolation, one of the variants of multidimensional representations in the
form of Fourier’s integrals with integrals replaced by finite sums is used.
The biarray of the neural-network model stores the parameters of the “op-
timal” finite Fourier-transform; the dimension of the model corresponds to
the number of harmonics.

In optimization, the method of fast computation of multidimensional
gradients, or the Lagrange multiplier method, which in the frames of the
neural-network ideology is known as back propagation, and also the conjugate
gradient method are used. Similar to all fast, predisposed to parallelism
methods of nonlinear regression, the employed method can be called, by the
adopted tradition, a neural-network one.

It should be noted that in the frames of neural-network ideology, the
problem of multiparameter statistics being ill-conditioned is solved exter-
nally: poor conditionality may quite manifest itself in instability of param-
eters. But this instability is regularized in such a way that predictions and
approximations in good cases, when according to the problem’s sense their
instability is not to occur, really turn out stable.

At present the regression analysis of mareograms for a number of his-
torical tsunamis in the Pacific Ocean is being done with the aim of timely
prediction of tsunami danger for certain parts of the Pacific shore of Russia
(Figs. 1 and 2).
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Figure 1: An example of compactization of a mareogram with a record of tsunami.

Figure 2: An example of filtration of a tsunami record.
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3. Analytic Method of Data Analysis

3.1 Setting of the problem

One of the elements of technology of data processing from a deep ocean
network of tsunami detection buoys is determination of the character of sea
bed perturbation in the earthquake epicenter.

Mathematically, in the frames of the shallow water approximation, the
problem can be formulated as follows (Avdeev and Goruynov, 1996; Avdeev
et al., 1999; Vasiliev, 1981):

∂2u(x, y)
∂t2

= div (D(x, y) · ∇u(x, y)) +
∂2f(t;x, y)

∂t2
, (8)

where u(x, y) is the wave height, D(x, y) is the known profile of depth, and
f(t;x, y) is the sea bed perturbation that generates a tsunami.

Assume the special structure of the source term, namely, that f(t;x, y) =
θ(t) · ϕ(x, y), where θ(t) is the Heaviside function.

It is required to reconstruct the sea bed perturbation function ϕ(x, y),
whose localization is approximately known, if we know “mareograms,” i.e.,
readings of deep ocean sensors located at known points:

u(xi, yi, t) = ηi(t), i = 1, . . . , n.

In such a statement we obtain one of the known inverse problems of
mathematical physics: the source reconstruction problem. This problem in
its general form can hardly be solved effectively, but one knows the repre-
sentation of the source in the form of the product of spatial and temporal
components, the latter of which are representable in terms of the delta-
function.

3.2 Description of the numerical algorithm

For the case of a space distributed source, there are practically no stable
numerical algorithms in the practice of solution of inverse problems. This
fact is due to the high complexity and computational cost of the problem.
Most theoretical results also concern isolated special cases.

In this work, a numerical approach based on the search for extrema of
misfit functionals of special form is applied. The scheme of the method is
as follows. Using the initial approximation for the source function fs(x, y)
(constructed by a priori data, obtained from seismic observations), we solve
the direct problem (8), i.e., we find the field of wave heights us(x, y, t). Then
we seek for the minimum point of the misfit functional, the latter being
defined as the root-mean-square deviation of the measured data ηi(t) and
computed data us(xi, yi, t). For this purpose we analytically construct the
Green function of the problem, which is formally conjugate to the problem
(8).

Preliminary numerical experiments have been carried out for 1-D (in the
space variable) setting when there is no dependence on y, i.e., in the frames
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of processing of one trace. The source is approximated by the finite sum

ϕ(x) =




0

N∑
k=1

Ak sin(kπ x−xb
xe−xb

),
x < xb

xb < x < xe

x > xe

0

(9)

where xb and xe are the coordinates of the domain of formation of the earth-
quake source.

3.3 Numerical experiments

For a numerical experiment, we have used the profile of the ocean bed near
the shore of Chile in the region of the epicenter of the disastrous tsunami that
happened on 5 May 1960 (see Fig. 3). The 1D ocean bottom profile is shown
in Fig. 4, where the supposed epicenter of the tsunamigenic earthquake is
marked by a dashed line and the location of the detection buoy is marked
by a dot. The x-axis is directed toward the shore; the zero point lies at a
distance of 136.5 km from the shore.

Three different types of the source have been considered:

(a) abrupt upthrust in the direction of the shore; in this case the source
was taken in the form

ϕ(x) = −0.05 · sin
2π

x− x∗b
x∗e − x∗b

 ·
2π

x− x∗b
x∗e − x∗b

2

, (10)

where x∗b and x∗e delimit the actual region of formation of the earth-
quake center (xb ≤ x∗b < x∗e ≤ xe);

(b) abrupt upthrust in the direction of the sea; in this case the source was
taken in the form

ϕ(x) = 0.05 · sin
2π

x− x∗b
x∗e − x∗b

 ·
2π

x∗e − x

x∗e − x∗b

2

; (11)

(c) elliptical uprising; in this case the source was taken in the form of the
function

ϕ(x) = 0.8 ·

1 −

x−
x∗e + x∗

e−x∗
b

2

2

x∗
e−x∗

b
2

2

 . (12)

The effective size of the source x∗e − x∗b was set equal to 14 km, and the size
of the region of expected location of the epicenter xe − xb was set equal to
25 km (i.e., twice as large).

Table 1 presents a number of parameters characterizing the field of per-
manent displacements created by each of the above sources, in particu-
lar, the values of the maximal positive and negative vertical displacements
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Figure 3: Region of the earthquake on 5 May 1960, approximates trace is marked
by the solid line.

Figure 4: The trace profile. The supposed epicenter is marked by a dashed line
and the location of the detection buoy is marked by a dot.
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a

b

c

Figure 5: Abrupt upthrust in the direction of the shore from (a) the actual model
source, (b) the reconstructed source, and (c) the form of the passing wave registered
at the detection buoy.
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Figure 6: Abrupt upthrust in the direction of the sea from (a) the actual model
source, (b) the reconstructed source, and (c) the form of the passing wave registered
at the detection buoy.
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a

b

c

Figure 7: Elliptical uprising from (a) the actual model source, (b) the reconstructed
source, and (c) the form of the passing wave registered at the detection buoy.
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Table 1: Values characterizing the waves that are aroused by the
source in the coastal area.

Source ��
+, m ��

�, m ∆��, m ∆� , m2
�0, m2

��, MJ �max, m ��

(a) 1.20 1.20 1.39 4398.2 3952.6 23.49 1.329 1.912
(b) 0.19 0.19 1.39 4398.2 3952.6 23.49 1.333 1.918
(c) 0.80 0.0 0.80 7466.6 7466.6 23.43 0.875 2.187

U+
z and U−

z , the value of the maximal amplitude of the ocean bed dis-
placement ∆Uz = U+

z + U−
z , and also the change of the basin’s volume

∆V =
∫ xe

xb
Uz(x)dx and the total volume of displacement of the ocean bed

V0 =
∫ xe

xb
|Uz(x)|dx. The values of the tsunami’s initial energy Et are also

presented. The latter values were calculated in statistical approximation by
the formula Et = ρwg

2

∫ xe

xb
U2

z (x)dx, where ρw is the density of water. Since
the one-dimensional case is considered, all the parameters are given per one
linear meter of the wave front propagation.

Table 1 also contains values characterizing the waves that are aroused
by the source in the coastal area, in particular, the values of the maximal
heights of waves in the vicinity of the detection buoy hmax and the values
of the wave amplification coefficient Km, which is defined as the ratio of the
maximal wave height in the area of detection buoy to the maximal wave
height in the area of the source: Km = 2·hmax

∆Uz
.

4. Conclusion

A variant of the modern informational-computational technologies for anal-
ysis of tsunami observation data is proposed. These technologies are capable
of effectively solving the posed problems in on-line mode in local systems of
tsunami early detection and warning in the Pacific Ocean.
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